Biclustering of DNA Microarray Data: Theory, Evaluation, and Applications
نویسندگان
چکیده
In this chapter, different methods and applications of biclustering algorithms to DNA microarray data analysis that have been developed in recent years are discussed and compared. Identification of biological significant clusters of genes from microarray experimental data is a very daunting task that emerged, especially with the development of high throughput technologies. Various computational and evaluation methods based on diverse principles were introduced to identify new similarities among genes. Mathematical aspects of the models are highlighted, and applications to solve biological problems are discussed. DOI: 10.4018/978-1-60960-491-2.ch007
منابع مشابه
به کارگیری خوشهبندی دوبعدی با روش «زیرماتریسهای با میانگین- درایههای بزرگ» در دادههای بیان ژنی حاصل از ریزآرایههای DNA
Background and Objective: In recent years, DNA microarray technology has become a central tool in genomic research. Using this technology, which made it possible to simultaneously analyze expression levels for thousands of genes under different conditions, massive amounts of information will be obtained. While traditional clustering methods, such as hierarchical and K-means clustering have been...
متن کاملFinding checkerboard patterns via fractional 0-1 programming
Biclustering is a simultaneous partitioning of the set of samples and the set of their attributes (features) into subsets (clusters). Samples and features clustered together are supposed to have a high relevance to each other. In this paper we provide a new mathematical programming formulation for unsupervised biclustering. The proposed model involves the solution of a fractional 0-1 programmin...
متن کاملIntegration and Reduction of Microarray Gene Expressions Using an Information Theory Approach
The DNA microarray is an important technique that allows researchers to analyze many gene expression data in parallel. Although the data can be more significant if they come out of separate experiments, one of the most challenging phases in the microarray context is the integration of separate expression level datasets that have gathered through different techniques. In this paper, we prese...
متن کاملBiclustering of Gene Expression Using Glowworm Swarm Optimization and Neuro-Fuzzy Discriminant Analysis
-The advent of DNA microarray technologies has revolutionized the experimental study of gene expression. Biclustering is the most popular approach of analyzing gene expression data and has indeed proven to be successful in many applications. In recent years, several biclustering methods have been suggested to identify local patterns in gene expression data. Most of these algorithms represent gr...
متن کاملDNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach
Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNAmicroarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of bicluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011